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Abstract: Stochastic grsions of Gompertz, Ricker and various other dynamics models play a
fundamental role in quantifying strength of density dependence and studying long term dynamics
of wildlife populations. These models are frequertiimatedising time series of abundanc
estimates that are inevitably subject to observation error and missing data. Thiasbee
addressed.with a staspace modeling framework that jointly estimates the observed data model
and the underlying stochastic population dynamics (SPD) model. In cases where abundance dat
are from multiple locations with a smaller spatial resofufe.g. from markecapture and

distance sampling studies), models are conventionally fitted to spatallsd estimates of

yearly abundances. Here, we demonstrate that a spatial version of SPD models can be directly
estimated fromyshort time series of spatially referenced distance sampling data in a unified
hierarchical'statspace modeling framework that also allows for spatial variance (covariance) in
population growth. We also show that a full range of likelihood based inference, including
estimabiliy diagnostics and model selection, is feasible in this class of models using a data
cloning algorithm. We further show through simulation experiments that the hiesdrstate-

space framewark introduced herein efficiently captures the underlying dyaha@aameters and
spatial abundance distribution. We apply our methodology by analysing a time series of line-
transect distance sampling data for fin whaBsdenoptera physalus) off the U.S. west coast.
Although.there were only seven surveys conducted during the study time frame, 1991-2014, our
analysis detected presence of strong density regulation and provided reliatd¢essof fin

whale densities. In summary, we show that the integrative framework developedatieres
ecologistsdobetter inféeey population characteristics such as presence of density regulation

and spatialkwvariability in a population’s intrinsic growth potential.

Keywords: Ricker model; spatial modelling; density dependence; Gaussian

process; nonlinear autoregressive modetestpace models; distance sampling; fin whale
(Balaenoptera physalus); maximum likelihood estimation; model identifiability; Akaike

information.criterion

| ntr oduetion

Phenomenological population dynamics models, such as the density-independent diffusion
approximation model (Dennis et al. 1991), are powerful for studying long-term dynamics of

wildlife populations. However, a fundamental question in understanding the underlying

dynamics is whether or not a population is seffulated, i.e. growth rate is negatively density
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dependent (Sibly and Hone 2002, Brook and Bradshaw 2006). A suite of stochastic population
growth models, such as thdtgyistic and Bevertoidolt modds (Pedersen et &011, Ponciano

et al. 2009) together with welleveloped statistical techniques are available to model and test the
presence of density dependence (Dennis and Taper 1994, Ponciano et al. 2009). Time series of
abundance_.estimates, sudhlaose arising from mark-recapture or point count surveys, are
therefore frequently used to fit these models to study population dynamics and to preict fut
viability"(Dennis and Otten 2000, Dennis et al. 2006). Because available time series are merely
estimatesofthe underlying true abundances, incorporating uncertainty (meagurem

observation error) associated with these estimates is an important issogeinestimation and
prediction dt isswell-established in the recent ecological literatiis unaccounted for
observation‘error can lead to biased estimates of key dynamical parameters and may even mask
the form of the underlying growth model (Freckleton et al. 2006, Barker and Sibly 2008,
Nadeem and Lele 2012). Statpace models, a rich ckaef general hierarchical models, provide

an effective framework for linking the stochastic observation error process to the stochastic
populationsdynamics (or statpjocesg{Pedersen et al. 2011). Fitting these models to time series
of abundancerestimates yields valid statistical inferences for the biological state process.

In“this paper, we show that the conventional sipsese approach to fitting stochastic
populationsdynamics (SPD) models to a time series of abundance count data can be extended t
modeling spatially referenced distance sampling survey data. Distance samgiirggisinvolve
observing animals from a randomly selected set of line or point transectd pidkin a
geographiesregion (Buckland et al. 2001, Thomas et al. 2010). Distanaesals from the line
or point to'detections are also measured. In the case of line transects, observers traverse straight
lines and measure perpendicular distances of animals from the lines. Assushimgpbability
of animal detection is a decreasing function of these distances, density estimates can be adjusted
for imperfect detection bias (Buckland et al. 2001). An important aspect ofadigampling
methods is.the/spatial replication of line or point transects within the geagraglon under
study. Thisgeoupled with repeated surveys conducted over a number of years, provides an
opportunity*to,study population dynamics while simultaneously incorporating spatialiNtgriab
in abundance. Yet most of the existing SPD modeling methods fail tgporete spatial
replicability in such abundance surveys as they employ spai@lgd estimates of yearly
abundances (e.g. Knape and de Valpine 2012). Here, we demonstrate that SPD models can be
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estimated from distance sampling data in a unified hierarchicalsgtate modeling framework
that also allows for spatial covariance in population growth.

Incorporating spatial variation in growth and density dependence over a smalkar spati
scale has important implications for studying population dynamics and wildlifageaent
(Shima and,©senberg 2003, Johnson 2006, Thorson et al. 2015). Recently, Thorson epal. (2015
conducted\a simulation study involving a spatial Gompertz stetee model to investigate the
effect of'spatial'variability in population density. Their analysis showed thabthentional
nonspatial’Gempertz model (Knape and de Valpine 2012) resulted in markedly biasatessti
of density. dependence when densities were allowed to vary spatially. However, their spatial
Gompertz.maodel provided accurate and preessenates of density dependence, highlighting the
importancerof incorporating spatial structure in SPD models.

Our statespace formulation here consists of two model components: (i) a spatial SPD
process maodel, and (ii) a hierarchical distance sampling (HDS) observati@esgpmodel.
Distance sampling models (which represent the observation process in the current setting) have
seen considerable development in the past decade to account for variability in éctibrdet
probability‘andsspatial population density (Royle et al. 2004, Johnson et al. 2010, Sillett et al.
2012, Oedekoven et al. 2013). Recently, extending the model presented in Sillett et al. (2012)
involving.eovariate effects on both detection and abundance, Sollmann et al. (2015) developed
an open population HDS model to account for temporal variation in abundance from multiple-
survey distance sampling data. They employed Dail and Madsen (2011) Markov state process
model to model abundance transitions between survey replicates and showed its usefulness in
detecting pepulation trends through a simulation study. However, our modeling approach here is
novel in a number of ways, e.gi) we replace the simpler Markov process madebollmann et
al. (2015)with the classidaSPD modeling structurdgnnis and Taper 1994, de Valpine and
Hastings 2002), thereby allowing estimation of key population parameters quantifyingjént
growth potential and strength of density regulation, (ii) our process model allows fat spati
auocorrelation in growth by introducing a parsimonious variacweariance structure for the
spatial environmental noise process, and (iii) it allows for population pidio space and
time by exploiting the spatitemporal correlation structure inhetémthe model.

We exemplify our methodology by analysing a time series oftiaresect distance
sampling data for a fin whaleBdlaenoptera physalus) population off the U.S. west coast.
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Earlier, Moore and Barlow (2011) analysed a part of this sameetitbagetect population trend
using a log-normal process model far, where the mean parameter was modeled as a linear
function of time. We analyse the fin whales distance sampling data using data oning
details, sedele et al. 2007, Lele et.&2010 andNadeen?013) to conduct frequentist inference,
including likelihood based model estimation, model selection and prediction of peiatss.

We also conduct.a simulation study to assess parameter estimation and spéaiygbekehistion
using the standard Bayesian MCMC framework. Results indicate that the profdssgace
modeling approach is efficient in detecting density regulation rerery short time series
data. Our'model provides a powerful mechanism in predicting spatial abundaoncepasex to

a nonspatial yersion of the same process model.

Materials and Methods
Spatial State-Space Ricker M odel

Theclassical Rickef1954)stae-space model for population time series analysis is given as
(Dennis and Taper 1994, de Valpine and Hastings 2002, Dennis et al. 2006):

State Process: X, =X, +a+beXt1+¢ (1-a)
Observation:Process. W;|D;~ fyy (W;; Di, P) (1-b)
whereX; = logD, is the true underlying legopulation density at timg W; is the
corresponding abundance estimate;N (0, ¢2) represents environmental noise process and
fw () dengtes the observation error distribution that may depend on an unknown parameter
vectory. The functional form of the Rickgrowth modela + be*t-1, determines the form of
density dependent population dynamics, whikeeintrinsic growth parameter, quantifies
growth rate"at'small abundance levatsl density dependent growth occurs when 0.
Assumngthat'our population of interest consistssaubpopulations defined by their

geographic locations, = 1, 2, ..., S; we consider the following spatial version of the Ricker SPD

model:
Xst = Xgr_p 400 + beXst-1 + g, (2-a)
& = (51,9 €2, 0y Ss,t) ~N(0, %)), (2-b)

whereg; is serially independent environmental noise vector2and spatial varianceovariance

matrix accounting for correlation in sigpecific population growth, conditional on previous

4 . . .
year’s logabundance level¥;_; = (Xl,t_l,Xz,t_l, ---rXS,t—l) . We introduce spatial correlation
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between sites via an isotromorrelation functionp®/), whered(i, j) denotes the Euclidean
distance between the sitésj). The resulting covariance structure is a special case of a Matérn
covariance function (Cressie and Wikle 2011). The spatial varemariance maix is then
given as
I, =0ZR (3)
whereR is-a.correlation matriwhose(i, /)" entry isdefined byp?(/). This defines the multi-
site envirgnmental noise processh(Pas a Gaussian process (see, e.g. CressM/ikiel2011).
We also need to specify an initial probability distribution for the state process time{Xelfes
whent=1,"ie. farX,. Further details on this are included in Apperfslix

The'intrinsic growth rate, now spatially referenced in (2), can further be modeled in a
number of ways depending on the availability of environmental covariates. For instheoe, w
time series of sitspecific abundance covariates are available, we have
ase = a+ Zgil ;(;Z)Zp,s,ti 4)
wherez, ;. is thept" covariate value observed in yeat sites. Alternatively, when covariates
only represent habitat suitability not observed temporally, (4) can be remodeled as
as = a BEETpP 7, . (5)
When no_enavironmental covariates are available at all, we can still account for spatial
covariability in intrinsic growth rate as
as = (ay, @y, ..., as)' ~N(als, Z,), (6)
wherel; is.ans-dimensional vector with all elements as 1 and the mean intrinsic growth
rate. The Spatial varianamvariance matrif, can be modeled &, = ¢2R, whereR is as
defined in'(3). For an example of a similar modeling approach in the contpattdl Gompertz

population dynamics model, we refer the reader to Thorson et al. (2015).

Hierar chical.Distance Sampling M odel

In this section-we describ@ #DS model that we employ in our simulation stuldgt N .
denote theranimal abundance on a distance sampling effort areaaf,s&zgveyed in year on
a given sites. Cenditional oD, ., we model the transect abundange as
Ns’t|D5,t~P0isson(As’t); log A, = log Dg, + log as,. (7
Note thatwe defineD;, asanimal abundanaen a unit area in site which includes the effort

areaag,, as a subsekurthermoreunlike Sollmanret al. (2015who parameterize their Poisson
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process model directly on population siz.g, we viewN;, as a function of animal density; .,
wherelog D, ; (= X;;) is modeledvia thespatialRicker SPDmodel (2).

Here, for simplicity of exposition, we only consider line transect samgbagitioning
thetranseet halwidth, w, into I equi-length distance intervals and conditionamgthe latent
transect abundancdg ;, the vector of animal countB; ; = (Ng¢ 1, Ng 2 s Nt Nop —

Yi_1 M) vissmodeled as a conditional multinomial random vector (Royle et al. 2004):
Mg ¢ |Ns . ~Multinomial(Ng ., 7 . ), (8)
whereftg, = (g1, T2, ) s 1 — Tsp)' @NAms, = Yi_; s, iS the total probability of
detection given byn integral of théalf-normal detection functiom,(h; o) (Buckland et al.
200D):

mge == [ G(H502,)dh = = [ exp (—

Notice that.the.modeling framework developed here also allows for other detrectctions

hZ
2
205t

Ydh.

described.in.Buckland et al. (2001). When specific detection covariates are also available,

the scale parameteg, can be modeled as (Moore and Barlow 2011, Oedekoven et al. 2013)

log (05,6) = B + Tyt By Upse 9)
where u, s IS thept" detectability related covariate value observed in yearsites for
p=12"P,.

It is conventionally assumed thdetection is perfect on the transect line (i.e. at distance
h = 0), which corresponds t@(0) = 1. If detection is imperfect & = 0, a separate estimate of
g(0) is required to rescale the detection function. However, the additional paragédelis
typically inestimable from distance sampling data alone as additional auxiliary infonisati
required-forits-estimatiofe.g., Laake and Borchers 20@B&rlow 2015). Weassumgy(0) = 1
in our simulation study; however, we explicitly account for imperfect detection onneys
trackline in our fin whalecase study.

Conditioning on animal densify, ., but marginal on the transect abundaNgg we can
show thatjoint distribubn of observed animal counts, ; = (ng¢ 1, g2, ..., Nt 1), IS given as
(Royle 2004):

fn(ns,tle,t) = H{:l POiSSOTl(TlS’t’i; As,tns,t,i)!
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which is theobservation process model in the statspace formulation outlined in (1) above. The
observation model for the full distance sampling data atrapnsisting of observed animal
counts,can be written as

fa@ID) = T15-J1i=1 TTic Poisson(ng; AT i), (10)
whereD is theS X T latent animal density matrix ov&rsites andl years. Notice that the
observation.model (10) is an instance of a generalized linear mixed model (GluNivH

Poisson counts are modeled via aliogar link function,.e.

log(E(ns,t,ile,t)) = log(as,t) + lOg(ns,t,i) + Xst
whereX; . (= log D; ) serves as the spatiemporal random effect. Further discussion on this
and a comparison of the HDS model (10) with that of Sollmann et al. (2015) is ptesent
AppendixS2 Also, a graphical depiction of the various modasi8mated irthis paper is shown
in Fig. S1-S3
Model Estimation and Selection
No closed form exists for the high dimensional integral appearing i8&gendering the
maximum likelinood estimation for such non-linear r@aussian statspace models
computationally. intractable. In this paper, we demonstrate how data cloninga[B&Cently
developed algorithm for obtaining maximum likelihood estimatelsE8) and associated
standard-errorstin complex hierarchical models, can be used to conduct likelihedd-bas
inference for models introduced in this paper. We further illustrate that DC is a powerful tool in
diagnosing model estimability, a crucial propddyvalid statistical inference. For further
details of the theoretical and computational methodology underlying DC, we refeadee i@
Lele et al. (2007, 2010), S6lymos (2010) and Nadeem (2013). We also employ the method
developedin. Lele et al. (201to obtaimalikelihood based predictive distribution for the process
states X/ (see;for detailed illustrations, Nadeem and Lele 2012).

Although we show that maximum likelihood estimation for analysing a single reakta
is feasible using dataarting, in our simulation study we employed standard Bayesian approach
with diffuse prior distributions to contain computational burdédh computations, for both DC
and Bayesian inference, were performed usingt8®&C samplers implemented in JAGS 3.1.0
(Plummer 2003) via the dclone package (Solymos 2010) of the R computing software (R Core

Team 2014). A summary of prior distributions for respective model parametepoised in

This article is protected by copyright. All rights reserved



Table S1We also provide R and JAGS code in Supplement 1 for the Monte $hallation
studies and DC based analysis of the case study model presented in the next section.

As we remarked in the Introduction, understanding and quantifying the extent of density
regulation_in wildlife populations is at the heart of population viability aral3ennis and
Taper 1994)..Here we compute the Akaike information criterion (AIC) index (Burnham and
Anderson 200xto illustrate that presence of density dependence can be detected within the
modeling framework presented herein. A key ingredient in hypothesis testing and model
selection analyses is the likelihood ratio (LR) statistic. However, computation of LRs is
generally intractable in complex hierarchical models as one needs to calculate the maximized
value of apalytically intractablikelihood functions such as in E§8 Recently, Ponciano et al.
(2009) presented a computationally efficient Monte Carlo algorithm for computiagnLR
hierarchical models. See Nadeem (2013) for detailed illustrations of its implementation in the
context of state-space population dynamics models.
Monte Carlo.Simulations
We evaluate model performance by simulating 100 distance sampling data setheinder t
hierarchical statspace model (HSSM) defined by the process model (2) and the observation
mode (10)"We separately assess estimation performance under the spatial intrinsic growth
modelsdefined by (4) and (6), where we denote the resultingsgiate-models as HSSMnd
HSSMII, respectively Table S2. We sample the distansampling data at 25 sites, where site
coordinates.are generated from two independent uniform variates. Keeping iheighott time
series length ofithe case study dataset (seven survey years), we generate 10 afdrgyyears
distance sampling time series data under H§akd HSSMII, respectively.

For both models, we simulate population trajectories under stationary population
dynamicswith process growth model parameters ggt, #9s2) = (1.00,—0.01,1.00). To
subject ourrmadeling approach to a stricter evaluation, we do not consider othercdynami
scenariosysuch as recovering populations and/or larger environmental noise,ielsethe R
growth medel parameters are shown to be estimable with high accuracy under these scenarios
(Dennis and Taper 1994). For simplicity of exposition, we assume a single covariatetheth i
intrinsic growth model (4) and the detection model (9). These covauatemdu,,, are
independently generated from zenean Gaussian distributions with variances 0.1 and 1.0

respectivly. True values of all the model parameters are reportédhie S2
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It is important to note that the Ricker growth model generates chaotic population
dynamics fora > 3.0 (Turchin 2003), making it highly intractable for statistical inference in the
statespace framework using standard estimation techniques (Wood 2010). We thdresare c
parameter values in (4) and (6) such that the resulting simulated intrinsic growth effeetisd
a, under HSSM-I and HSSM; respectively) remain less than 2m0all simulations. Value of
the spatial eorrelation paramepe(Table S2 is chosen such that it gives a correlation of 0.25
between two sites located on tiagonal vertices of the unit square.

For simulations under HSSM-we consider the scenario where some of the sites are not
visited after the first survey year, resulting in missing surveys in yearé fot such sites.
Specifically, we ,randomly selectedubsurveyed sites from the total2sites. However, selection
of such sites can be based on logistical convenience and geographic location in rezd dista
sampling applications. We show that the animal density on these unsurveyed sites is accurately
predicted by.exploiting the underlyirsgatial correlation structure in population growth. This
strategy can.be,repeated in the subsequent 5 yea6s 7, ...,10) by selecting a different set of
unsurveyed sites while resuming surveys on the earlier skipped sites. Wethsonbdel under
the hypothesis'that = 0, to show that density estimation is significantly biased (see Results
section ahead) when spatial correlation between sites is ignored.

Convergence of MCMC chains in HSSM-I simulation study and fin witass study
was satisfactgr. However, for the HSSM-II simulation study, we found poor convergence in our

simulation studies for the latent ladpundance in the unsurveysites,
XEU) = (XAt X294 -, X25¢). TO address this issue, we provide a simple algorithm to compute a

predictive posterior distribution d;fgu), whose details are given in Append@R

Fin Whales'Case Study

Under the U.S. Marine Mammal Protection Act, population assessments must be
conducted for_marine mammal stocks inhabiting U.S. waters. Marine Mammkl Stoc
Assessment Reports (e.g., Carretta et al. 2014) include estimates of animal abundance and
population trends within the U.S. Exclusive Economic Zone, which encompasses ootjoa fra
of most populations. The Southwest Fisheries Science Center, part of theaNisliarine
Fisheries Service, systematically conducted sevenlsspd lingransect surveys for cetaceans

in waters off the U.S. west coast during late summer and autumn between 1991 and 2014. Data
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through 2008 (the first six surveys) have been used to estimate abundance trends for fin whales
(Balaenoptera physalus), beaked whales (family Ziphiidae), and sperm whadbagseter
macrocephalus) from a simpler hierarchicaistance sampling model (exponential growth
process model, no spatial covariance in the observation model) (Moore and Barlow 2011, 2013,
2014). The.eurrent analysis provides updated abundance and trend estimates for $in whale
based on the newer model, nestimates ofy(0), and inclusion of the 2014 survey data.
Referto'Barlow and Forney (2007) and Moore and Barlow (2011) for details of the
survey design;field methods, and description of the fin whale and effort data through 2008. Of
particularrelevace to the current analysis is that the study area is divided into four strata of
roughly similamsize from north to south: Oregon-Washington, Northern California, Centra
California,"and*Southern California. For the 2014 survey, stratum effort was, fromanorth t
south: 2706, 1998, 1839, 2779 km (total: 9322 km). Only sightirig$ km from the vessel are
included for the current analysis (in the earlier analysis by Moore and B20lbiy only
sightings within 4km were used). In 2014, there were 32, 36, 20, and 8 group sightings per
stratum (fremrnorth to south; total = 96). Mean group size for fin whales across the entire
dataset is approximately 2 animals. Many covariates potentially affetginigng probability
are recorded along the effort transects. In general across cetpee#as, the most important is
Beaufort.sea state, recorded as an integer ranging from 0 (no wind, sea likerpthmough 5
(approx. 20-knot winds with many waves and white caps). Our analysis here is tesirtbee
impact of this variable on grpuletection rates.
Letwusnow present the modeling framework for the fin whale dataset. Unlike the
simulation study where our response variable was number of animals deteciedhsitffort
area partitioned ihdistance intervals, here we have the actual detection distances aaslable
well. Let us first.introduce some notation where all distance units are in kilometers:
j: Beaufort.state with possible values 1, 2, ..., 5 (0 and 1 are combined in integer value 1).
L. ;: total.transect length (knmi) yeart in stratums with Beaufort statg,
as. ;- effort-area corresponding 1, ;, given asx,, ; = 2wl j, Wherew is the transedtalf-
width, i.e. 5.5'%km,
n, ;. humber of fin whale groups detected withiy ;,
Vs jk- distance of th&" detection made within effort areq, ; (see Moore and Barlow 2011,

for example frequency distributions of fin whale detection distances),
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g;(0): probability of detection on the transect line wBibaufortstatej,

¢¢: mean fin whale group size in year

W, = Y5-1 Ds A total animal abundance within the whole study area, wigeiethe area

(km? of thest" survey stratum with corresponding abundance in ygien asDg As.
Thesfullebservation model is then given as follows:

Ys,t,j,k"’fH()’s,t,j,k; Usz,t,j)' (11)

wheref (1) is the halfnormal distribution, truncated at = 5.5 km; and

log (Us,t,j) = By +jﬁbeaufort1

(12)

Ngt,j|Ds e~ Poisson(lggj), (13)
m) _ st,j9;(0)Ts¢ jDst _ 1w __h?

Asij = o , whererg, ; == [ " exp ( ZUSZ,t,j)dh'

Barlow (2015) derived estimates @f(0) using a model-based approach only involving
fin-whale detections on the trackline in varying survey conditions. The model form is given as:
g;(0) = g1(0)e/Pso; wherej > 1. (14)
Importantly, these newer Beaufort-dependgitt) estimates prade for a much lower marginal
91(0) estimatethan the constant estimatg @b) = 0.92 used by Moore and Barlow (2011), so
the new density and abundance estimates are expected to be considerably higher. Here we use
the estimate off; (0) = 0.92 for Beaufort states 0 andj1) and then calculatg; (0) for
higher seasstates based on the estimatg,obbtained in Barlow (2015). However, we only
incorporatemuncertainty associated with gh€0) = 0.92 estimategported in Barlovand Forney
(2007).

As no abundanceslated covariates are available, and because we only have a small
number of.strata (sites), we assume stragpecific intrinsic growth rate effect&,, a,, as, a,)
as unknownsparameters in the process model (2). We separately estimatgoupasizep,
from the observed fin whale group sizes, with details provided in App&ddixhere we report
a simple algorithm for incorporating the uncertainty in the estimates; gfg (0)) in our DC-

based maximum likelihood estimation.

Results

Monte Carlo Simulation Study
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Table SZummarises Bayesian estimation of model parameters from analysing simulated
distance sampling data generated under HS&NW HSSMII respectively. Summary statistics

for bias and root mean square error (RMSE) of Hrameter estimates indicate that observation
model parameter@ﬁé”), 1(”)) are estimated accurately under both models. de&icientof the

habitat related‘environmental covariaﬁéz,), in HSSMH1 is also accurately estimable. Estimation
of the underlying intrinsic growth parameter,and the density dependent parametgeis also
unbiased under both models. However, estimation of the population carrying cafacip, is
slightly biased.downwards under HSSM_II. Note that lei® in a sense, aaverage carrying
capacity over.the entire study region as it is computed via the underlying sinigigic growth
parameteg. Parameterép, o) associated with the environmental noise variesmeriance
matrix, X, ,.are. slightly biased downwards under HSSM-I. However, there is considerable
upward bias.under HSSM-II, likely resulting from strong interaction among thengeria

covariance related parametepsd;, a4, ox,) in HSSMiI.

The RMSE values are generally larger under HSEMonsisteth with the facts that (i)
we have smaller number of sites and years (20 and 6, respectively) as compared to those
employed-for-HSSM-I (25 sites and 10 years), and (ii) unlike HESNESM-I does not
include habitatrelated covariate information in theigpantrinsic growth model. Notice that the
RMSE ofK'is'much larger under HSSM-II as compared to that of under HSSMSs is
because the spattemporal variability in intrinsic growth under HSSIMs effectively explained
by the observed habitat coiate,z; .. On the other hand, absence of such a covariate in HSSM-
Il results in higher uncertainty in predicting s#eecific intrinsic growth rate effects, which in
turn inducesslarge uncertainty in estimatiorkof

Nextwe-assess model perf@ante in predicting the underlying spatial (log-) abundance
densities (Fig. 1). It is evident that sggpecific abundance prediction under HSSM-I is unbiased
with good precision (Fig. 1a; RMSE = 0.1751). Fig. 1b depicts predictive accuracy under
HSSMII for the 5 unsurveyed sites over five survey years, from year 2 to 6. We also compare
the perfarmance by fitting a simpler model that ignores spatial correlatiba ent/ironmental
noise processp(= o, = 0; gray points in Fig. 1b). This withowspatialcomrelation model
seems to accurately predict densities only near the carrying cadatidp. However, as the true
densities fluctuate away from the carrying capacity, the accuracy deteriorates as predictions are

significantly biased upward and downward whenever the true densities move above and below
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the carrying capacity threshold (RMSE=0.3799). The predictive performance under HESM-
however unaffected by the underlying stochastic fluctuations in population abundance, and is
much superior as compared to the simpler witlepatiatcorrelation model (RMSE=0.1942).
Thus, the spatial correlation structure inherent in H8BIMIps accurately predict abundance
densities areund the unsurveyed sites.
Fin Whales Case Study
Table 1 summarises Maximum likelihoedtimates and associated asymptotic standard errors
for various model parameters for the fin whale dataset, where W& jise—0.2718 estimate
from Barlow (2015).We fit theoriginal model as described by equations 11 {alsb sed-ig.
S3), includng parameterg,.q..ror: for the effect of Beaufort sea state on the detection function
parameten,, ; as well ags,, for seastatedependeny;(0) (Eq. 14). However, there was no
evidence for.a.sestate effect on the detection function, as the estimatg.@f s+, which is
expected to be negative if sea state matters, was slightly positive with @aypaicbnfidence
interval (CI) substantiallywerlapping zeroﬁ(beaufort = 0.0325; CI: —0.0424,0.1074). Note
that Moore and Barlow (2011) also did not find evidence for an effect of sea state ion the f
whale detection functiomherefore, Table 1 presents revised model estimateByithor¢
excluded (ModeH, ).

Our DGbased estimability diagnostics indicated that all the model parameters in the
original medel, includingf,o, Bpeausort) aredirectly estimablefrom fin whales distance
sanpling data-{able S4. This is suprising at first glance; however, as the graphical depiction in
Fig. S3indicates, paramete($y, fpequrort) are estimable in (:12) from the observedistance
measurements . j x, alone. Therefore, theressfficientinformation available in the observed
fin whale countsng, ;, to rendeig,, as separately estimalfgee Eq13) Theestimateof g,
obtained directly from distance sampling data urifjeis -0.1729 Table S4, indicating that
detectabilityson‘the trackline deteriorates as sea conditions become rddigiverer, this
estimate.is‘considerably less negative than the coefficient approximating Barlow’s £2015)
estimate {0.2728). Barlow (2015) obtained hidiegate using a spatial model for animal density,
whereas our model here only estimates stratum differences in deDiségt estimatiorof g,
(Table S4 may be confounded with animal density (e.g., if fin whales are more abundant in
rougher more offsbre waters, which is at least partly the case). For this reason, we use Barlow’s

This article is protected by copyright. All rights reserved



(2015) estimate of,, = -0.2718 for the analysis results reported in Table 1. But for comparison
and future reference, we also report results correspondthg thstancesampling datdased
estimate of3,, (-0.1729) inTables S4 and S5.

We, employed the AIC computation algorithm by Ponciano et al. (2009) for model
selection tortest two additionkiological hypothesis of interest: @iy,: a; =a, =az =a, =a
, and (ii) Hyp=b'=+0, which indicates density independent population growth. The corresponding
AAIC values are reportaed Table 1 where Modéi; attains the lowesAIC value The large
AAIC values corresponding to the other two modH|g, (H,;) strongly support the hypothesis
that fin whale population growth is density regulated and that the differeat Siagpport
different intrinsic growth potential.

Thea parameters suggest annual population growth rates on the order of 20 — 50% for a
smalkpopulation condition (i.e., when growth is not resodncited). These estimates are
likely drivensby-rapid increases in abundance between the first two surveys (alruralagidy
doubled in‘three years; Fig. 2). However, most baleen whale populations cannot ibgrease
more thar® 5-12% annually (depending on the species) from birth and death processes (e.g.,
Best 1993, Zerbini et al. 2010). Rather, the initial abundance increases wereapiggirien
by immigratien.from outside the survey area, which encompasses only part of this #n whal
stock. As'such,.the observed distance sampling data lack information about true igitovwsic
potential for fin whales owing to the several missing survey years throughout the siody per
However, the-estimaseof annual rate of changethin the survey time framgiven by the
combination ofdandb, a + be*Xt-1 (see 1a), were reasonable and qualitatively comparable to
those estimated by Moore and Barlow (2011). The geometric mean for yearly growith rate
N;/N._4, from 1991 to 2014 had a mean of 1.075 (95% prediction interval based on predictive
process,distributions: 1.051 — 1.098). The strongest increases in abundance occurred after the
1991 survey and again between the 2001 and 2005 surveys (Fig. 2b). Total abundance in 2014
was similarte 2008, though this varied by stratum. In the 1990s, population density was highest
by far inithe Central California stratum (Fig 2a). This has remained an ariggn ¢though not
consistently inéreasing) densityrfin whales. Densities have become similarly high in
Northern California and off OregeWashington following strong and steady increases in these
areas since the earliest surveys. Fin whale density in Southern California has been lower than in

the other strata since 2001 and generally non-trending (but variable) sincén1®96here has
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been a roughly %eld increase in fin whale abundance within the CA Current study area between
1991 and 2014.

The spatial Ricker process model indicated weak spatial correlation between the adjacent
strata (meap?®) = 0.319) which further declined for the naadjacent stratgpf)) = 0.036
for Southern-California and Oregon-Washington, the two outermost strata). As outisimula
study for the HSSM-II suggested, presence of spatial correlation was usefubiotipgefin
whale density in Oregon-Washington during the 1991 and 1993 (Fig. 2a; recall this stratum was
not surveyed inthese two years).

Notice that abundance estimates are much higher for tHisengrig. 2b) than those of
Moore and:Barlow (2011) because of the rgg®) model component (14) introduced here. For
the four survey years between 1996 and 2008, abundance predictions ranged from 2.0 to 2.9
times higher in the new analysis. A complete summary of abundance estimateBadnie 88,
these include outputs relevant to the fin whabelstassessment report required under the U.S.
Marine Mammal Protection Act.
Discussion

Distance sampling methods are widespread in monitoring wildlife populations. §Bdckl
et al. 2001, Royle 2004, Thomas et al. 2010). Recent developments in modalibtasext:
sampling'-methods, such as incorporation of spatial heterogeneity in abundance @mhdete
probability as a function of observable covariates, maselted in improved estimation of
abundanceover large geographic scales (Marques et al. 2007, Sillett et al. 2012, Oedefkoven et
2013). Time series of distance sampling data presents additional opportunity to studiqropula
trends and temporal dynamics in population growth using phenomenological population growth
models (Dennis et al. 1991). A naive approach to such an analysis is to fit populatidn growt
models to individual abundance estimates obtained from distance sampling analyses (see, for
instance, Jolles, 2007). But uncertainty is often mishandled when taking this approabhcavhi
result in unreliable model estimation and mislead wildlife conservation managémeskiéton
et al. 2006 , Nadeem and Lele 2012). Improved frameworks have been developed (e.g., Moore
and Barlow 2011, 2013, 2014); but we have taken this work further by developing a
comprehensive statgpace modeling approach that integrates distance sampling with a spatially
explicit population process. By incorporating spatial variability in population grewttin a

unified framework (inference on SPD process model and the distance sampling airservat
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model obtained simultaneously), ecologists can better infer key population chatiaststiclas
presence of density regulation and spatial variability in a population’ssictigrowth potential.
Our modeling frameworis analytically more tractableompared to the generalized
Markov model of Sollmann et al. (2015), which they introduced in order to take into account
recolonizatien,from the neighboring sites as their simpletitegar trend model performed
poorly when fitted to simulated data genedatvith recolonization allowed. Specifically, we
show in"fAppendipS2that the true population rate of change under the generalized Markov
model is givenag = y + exp (72/2)/Ns._,, wherey is the population rate of change that can
be thought of as the sum of survival probabifitand recruitment rate; andz? is an
immigration process related variance paramétewever, as Sollmann et al. (2015) remark, this
rate of change'is inestimable becaysedz? are confounded. A similar population rate of
change can be computed under our formulation (see App8&dor details), given agyssy =
asqexp (a #bDg,_, + 0Z/2), wherea,, is the distance sampling effort area. Hetgy), is
estimable:because the underlying sfatecess parameters, b, ¢2) are all separately estimable.
We further note that the Ricker SPD model (2) accounthémependence db; . onDg,_4;
hence, implicitly that oNs . on N, .4 via (7),whereasany net immigration effect is implicitly
explained by'the varianesovariance parametefs?, p). Therefore, relocation is automatically
incorporatedswithin our modeling framework. Given that the parameters under thembtiz$
(10) and process model (2) are all estimable, the modeling framework developadshenach
more useful'from a statistical analysis viewpgainniceit allows, for example, quantification of

density dependen@nd estimatiomf site-specific abundances.

In the"case of finvhales occupying the California Current study area, our approach
providedimproved estimates of abundance (especially for theuessyed Oregon-Washington
stratum) and population trend, with abundance coefficient of variations (CVs) tieasmvaller
(TableS3) than those provided by Moore and Barlow (2011) even though we incorporated a new
source of uncertainty in the present analysis (i.e. to account for the rdlggibesveen Beaufort
sea statevangl(0)). The recent realization thg(0) varies withsea state (Barlow 2015) has
important consequences for marine mammal population estimates and mamagemfin
whale estimates here are more than double the previous estiQateBC based analysis

framework elegantly accounts for this relationship, and if a spatial model forlal@nsty were
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incorporated in the analysis, thgg, in (14) is estimablérom the distance sampling data

directly, thereby obviating the reliance on external estimates of reigiievalues.

Likelihood based inferenceif the class ofion-linear nonsaussian statepace models is
highly intractable even for univariate time series processes (de ValflgeRantas et al. 2014).
The form of the observation process modgl. ), in the standard setting is also simple, e.g. a
Gaussian or Poisson model with at most one unknown parameter (de Valpine 2002, Pedersen et
al. 2011)."The noiinear statespace framework considered here adds further complexity in that
(a) it replaces'the univariate Markov transition density functiom) ({&#h a multivariate
counterpart(2), and (b) instead of using abundance estimates in a simpler observdébnt
invokes a full nonlinear hierarchical structure that directly models thevatiss process,
thereby leading:to an integrated state-space approach. This allows auiooaggioration of
uncertainty-associated with abundance estimation in estimating process level parameters. Here
we have shown that the full range of likelihood based inference, including paranietaties,
model estimability, model selection and prediction of process states, is abiomaity
accessible within this extended class of stg@ce models using the DC algorithm. Although,
we focused.on.distance sampling observation models only, an important future direction would
be to further extend our framework to other observation process scenarios, e.g. spktial m
recapture”(Royle et al. 2009, Ford et al. 2012) and spatial count models (Hasit&nandler
2014).

Recently, Thorson et al. (20[l&dapted the stochastic Gompertz model (Dennis and
Taper 1994) in (2) to evaluate density dependence over continuous space withiis@asite-
framework..Lhe linearity in the Gompertz growth model, coupled with the spatiahegria
covariancesstructure as defined in (3), allowed their process modgl forbe a Gaussian
randomfield™The choice of the Gompertz growth form was based on tractable statistical
properties of the resulting linear autoregressive SPD model (Dennis arrdl®8ge Thorson et
al. 2015). However, the Gompertz model is biologically implausible for densiligsdking
away from the equilibrium state (Ives et al. 2003). In comparison, the Ricker auajdkbd
herein leads to a more biologically rich nonlinear autoregressive prowetel forX,; which,
conditional onX,_,, also defines a Gaussian random field process in (2).

Understanding animal movement patterns is also crucial for proper characterisation of the

variancecovariance structure in spatial SPD models (Moralek 2040). The isotropic
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correlation function used in our analysis allows only for positive correlation in papulati
growth arising, for instance, from synchronous variability in habitat relaten$aat
neighbouring sites. However, animal movement targe geographical scale can induce
negative spatial correlation in growth. For instamegative correlation in fin whale stratum-
abundances.can occur via shiftx@taceanhabitat configuration due to oceanographic
dynamics everdarge scales, wherebynaals move from one stratum to another (Becker et al.
2014). This'may explain the declines observeSiaathern and Central Californiensity
between 2008"and 2014, and concurrent increases of Northern California, Oregon and
Washington, as ‘a northward shift in food availability may have driven large scalevaatth
shifts in distribution (Fig. 2a).

Recently, therdasbeen promising progress in development of stochastic animal
movement models (sefor instance, Albertsen et al. 2018Ve believe thafurther integrating
movement data and models into the HSSM framework developed herein would be a stgnifican
contribution, leading to improved insights into population dynamics and distribution ie futur
applicationst
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Table 1. Maximum likelihood estimates and standard errors of parameters in the hierarchical
statespace models fitted to thenfivhale Balaenoptera physalus) distance sampling datahere

we usef,, = —0.2718 estimate from Barlow (2015Note thathe estimate ob underH,, and

Hy, also reflects unit area far; ., which is 50,000 kfin all the fitted models.

Model a; a, a, ay b Bo O p AAIC

H 0.1691 0.4253 0.4320 0.3077 -0.0009 0.9296 0.2402 0.0357
! (0.0805)  (0.1689) (0.1252) (0.1043) (0.0004) (0.0501) (0.0874) (0.0891)
0.2265 - - - -0.0006 0.9302 0.3124 0.0096

Hyq 8.8722
(0.0840) - - - (0.0003) (0.0477) (0.0940) (0.0310)
0.0263 0.0228 0.1187 0.0935 - 0.9301 0.1920 0.0188

Hop 14.5755
(0.0432) " (0.0420)  (0.0436) (0.0514) - (0.0491) (0.0947) (0.0617)

# Estimate of @;under Hy,: a; = a, = a; = a, = a.
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Figure captions

Fig. 1 —(a) True &) verses predicted( ;) log-abundance densities under HSSM-I, and (b) the
same undeHSSMII (black points) and nonsptial HSSNM{p = g, = 0, gray point} across

100 simulated-datasets. Predictions shown under HSSM-II are for the 5 unsuneyddrang

years 2 to'6. Gray lines indicate ideal predictive performance (RMSE=0) and the vertical dashed

line marks the logarrying capacity leveldg K).

Fig. 2 —(a)Predicted fin whale density (per 1R67°) by year and stratum. (b) Predicted total
abundance along with 95% prediction intervals and the lower 20% quantile of the respectiv
predictive distributions. Note that Oregtvashington stratum was not surveyed in 1991 and
1993. Varieussymbols (circles, rectangles, etc.) in both panels indicate theyearse 1991,
1993, 1996, 2001, 2005, 2008 and 2014.
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