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Abstract: Stochastic versions of Gompertz, Ricker and various other dynamics models play a 

fundamental role in quantifying strength of density dependence and studying long term dynamics 

of wildlife populations. These models are frequently estimated using time series of abundance 

estimates that are inevitably subject to observation error and missing data. This issue can be 

addressed with a state-space modeling framework that jointly estimates the observed data model 

and the underlying stochastic population dynamics (SPD) model. In cases where abundance data 

are from multiple locations with a smaller spatial resolution (e.g. from mark-recapture and 

distance sampling studies), models are conventionally fitted to spatially pooled estimates of 

yearly abundances. Here, we demonstrate that a spatial version of SPD models can be directly 

estimated from short time series of spatially referenced distance sampling data in a unified 

hierarchical state-space modeling framework that also allows for spatial variance (covariance) in 

population growth. We also show that a full range of likelihood based inference, including 

estimability diagnostics and model selection, is feasible in this class of models using a data 

cloning algorithm. We further show through simulation experiments that the hierarchical state-

space framework introduced herein efficiently captures the underlying dynamical parameters and 

spatial abundance distribution. We apply our methodology by analysing a time series of line-

transect distance sampling data for fin whales (Balaenoptera physalus) off the U.S. west coast. 

Although there were only seven surveys conducted during the study time frame, 1991-2014, our 

analysis detected presence of strong density regulation and provided reliable estimates of fin 

whale densities. In summary, we show that the integrative framework developed herein allows 

ecologists to better infer key population characteristics such as presence of density regulation 

and spatial variability in a population’s intrinsic growth potential. 

Keywords: Ricker model; spatial modelling; density dependence; Gaussian 

process; nonlinear autoregressive model; state-space models; distance sampling; fin whale 

(Balaenoptera physalus); maximum likelihood estimation; model identifiability; Akaike 

information criterion 

Introduction 

Phenomenological population dynamics models, such as the density-independent diffusion 

approximation model (Dennis et al. 1991), are powerful for studying long-term dynamics of 

wildlife populations. However, a fundamental question in understanding the underlying 

dynamics is whether or not a population is self-regulated, i.e. growth rate is negatively density 
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dependent (Sibly and Hone 2002, Brook and Bradshaw 2006). A suite of stochastic population 

growth models, such as theta-logistic and Beverton-Holt models (Pedersen et al. 2011, Ponciano 

et al. 2009) together with well-developed statistical techniques are available to model and test the 

presence of density dependence (Dennis and Taper 1994, Ponciano et al. 2009). Time series of 

abundance estimates, such as those arising from mark-recapture or point count surveys, are 

therefore frequently used to fit these models to study population dynamics and to predict future 

viability (Dennis and Otten 2000, Dennis et al. 2006). Because available time series are merely 

estimates of the underlying true abundances, incorporating uncertainty (measurement or 

observation error) associated with these estimates is an important issue in model estimation and 

prediction. It is well-established in the recent ecological literature that unaccounted for 

observation error can lead to biased estimates of key dynamical parameters and may even mask 

the form of the underlying growth model (Freckleton et al. 2006, Barker and Sibly 2008, 

Nadeem and Lele 2012). State-space models, a rich class of general hierarchical models, provide 

an effective framework for linking the stochastic observation error process to the stochastic 

population dynamics (or state) process (Pedersen et al. 2011). Fitting these models to time series 

of abundance estimates yields valid statistical inferences for the biological state process. 

 In this paper, we show that the conventional state-space approach to fitting stochastic 

population dynamics (SPD) models to a time series of abundance count data can be extended to 

modeling spatially referenced distance sampling survey data. Distance sampling methods involve 

observing animals from a randomly selected set of line or point transects placed within a 

geographic region (Buckland et al. 2001, Thomas et al. 2010). Distances to animals from the line 

or point to detections are also measured. In the case of line transects, observers traverse straight 

lines and measure perpendicular distances of animals from the lines. Assuming that probability 

of animal detection is a decreasing function of these distances, density estimates can be adjusted 

for imperfect detection bias (Buckland et al. 2001). An important aspect of distance sampling 

methods is the spatial replication of line or point transects within the geographic region under 

study. This, coupled with repeated surveys conducted over a number of years, provides an 

opportunity to study population dynamics while simultaneously incorporating spatial variability 

in abundance. Yet most of the existing SPD modeling methods fail to incorporate spatial 

replicability in such abundance surveys as they employ spatially pooled estimates of yearly 

abundances (e.g. Knape and de Valpine 2012). Here, we demonstrate that SPD models can be 
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estimated from distance sampling data in a unified hierarchical state-space modeling framework 

that also allows for spatial covariance in population growth. 

Incorporating spatial variation in growth and density dependence over a smaller spatial 

scale has important implications for studying population dynamics and wildlife management 

(Shima and Osenberg 2003, Johnson 2006, Thorson et al. 2015). Recently, Thorson et al. (2015) 

conducted a simulation study involving a spatial Gompertz state-space model to investigate the 

effect of spatial variability in population density. Their analysis showed that the conventional 

nonspatial Gompertz model (Knape and de Valpine 2012) resulted in markedly biased estimates 

of density dependence when densities were allowed to vary spatially. However, their spatial 

Gompertz model provided accurate and precise estimates of density dependence, highlighting the 

importance of incorporating spatial structure in SPD models.  

Our state-space formulation here consists of two model components: (i) a spatial SPD 

process model, and (ii) a hierarchical distance sampling (HDS) observation process model. 

Distance sampling models (which represent the observation process in the current setting) have 

seen considerable development in the past decade to account for variability in both detection 

probability and spatial population density (Royle et al. 2004, Johnson et al. 2010, Sillett et al. 

2012, Oedekoven et al. 2013). Recently, extending the model presented in Sillett et al. (2012) 

involving covariate effects on both detection and abundance, Sollmann et al. (2015) developed 

an open population HDS model to account for temporal variation in abundance from multiple-

survey distance sampling data. They employed Dail and Madsen (2011) Markov state process 

model to model abundance transitions between survey replicates and showed its usefulness in 

detecting population trends through a simulation study. However, our modeling approach here is 

novel in a number of ways, e.g.: (i) we replace the simpler Markov process model of Sollmann et 

al. (2015) with the classical SPD modeling structure (Dennis and Taper 1994, de Valpine and 

Hastings 2002), thereby allowing estimation of key population parameters quantifying intrinsic 

growth potential and strength of density regulation, (ii) our process model allows for spatial 

autocorrelation in growth by introducing a parsimonious variance-covariance structure for the 

spatial environmental noise process, and (iii) it allows for population prediction in space and 

time by exploiting the spatio-temporal correlation structure inherent in the model. 

We exemplify our methodology by analysing a time series of line-transect distance 

sampling data for a fin whales (Balaenoptera physalus) population off the U.S. west coast. 
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Earlier, Moore and Barlow (2011) analysed a part of this same dataset to detect population trend 

using a log-normal process model for ��,� where the mean parameter was modeled as a linear 

function of time. We analyse the fin whales distance sampling data using data cloning (for 

details, see Lele et al. 2007, Lele et al. 2010 and Nadeem 2013) to conduct frequentist inference, 

including likelihood based model estimation, model selection and prediction of process states. 

We also conduct a simulation study to assess parameter estimation and spatial density prediction 

using the standard Bayesian MCMC framework. Results indicate that the proposed state-space 

modeling approach is efficient in detecting density regulation even for very short time series 

data. Our model provides a powerful mechanism in predicting spatial abundance as compared to 

a nonspatial version of the same process model.  

Materials and Methods 

Spatial State-Space Ricker Model  

The classical Ricker (1954) state-space model for population time series analysis is given as 

(Dennis and Taper 1994, de Valpine and Hastings 2002, Dennis et al. 2006): 

State Process:    �� = ��−1 + � + ����−1 + ��          (1-a) 

Observation Process: ��|��~��(��;�� ,�)           (1-b) 

where �� = log�� is the true underlying log-population density at time �, �� is the 

corresponding abundance estimate, ��~�(0,��2) represents environmental noise process and ��(. ) denotes the observation error distribution that may depend on an unknown parameter 

vector �. The functional form of the Ricker growth model, � + ����−1, determines the form of 

density dependent population dynamics, where the intrinsic growth parameter, �, quantifies 

growth rate at small abundance levels and density dependent growth occurs when � < 0. 

Assuming that our population of interest consists of � subpopulations defined by their 

geographic locations, � = 1, 2, … , �; we consider the following spatial version of the Ricker SPD 

model: ��,� = ��,�−1 + �� + ����,�−1 + ��,� ,            (2-a)  �� = ��1,� , �2,� , … , ��,��′~�(�,��),            (2-b) 

where �� is serially independent environmental noise vector and �� is spatial variance-covariance 

matrix accounting for correlation in site-specific population growth, conditional on previous 

year’s log-abundance levels ��−1 = ��1,�−1,�2,�−1, … ,��,�−1�′. We introduce spatial correlation 
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between sites via an isotropic correlation function: ��(�,�), where �(�, �) denotes the Euclidean 

distance between the sites (�, �). The resulting covariance structure is a special case of a Matérn 

covariance function (Cressie and Wikle 2011). The spatial variance-covariance matrix is then 

given as �� = ��2�                             (3) 

where � is a correlation matrix whose (�, �)�ℎ entry is defined by ��(�,�). This defines the multi-

site environmental noise process (2-b) as a Gaussian process (see, e.g. Cressie and Wikle 2011). 

We also need to specify an initial probability distribution for the state process time series {��}�=1�  

when t=1, i.e. for �1. Further details on this are included in Appendix S1. 

The intrinsic growth rate �, now spatially referenced in (2), can further be modeled in a 

number of ways depending on the availability of environmental covariates. For instance, when 

time series of site-specific abundance covariates are available, we have  ��,� = � + ∑ ��(z)��,�,����=1 ;                 (4) 

where ��,�,� is the ��ℎ covariate value observed in year � at site �. Alternatively, when covariates 

only represent habitat suitability not observed temporally, (4) can be remodeled as �� = � + ∑ ��(z)��,����=1 .                 (5) 

When no environmental covariates are available at all, we can still account for spatial 

covariability in intrinsic growth rate as  �� = (�1,�2, … ,��)′~�(���,��),               (6) 

where �� is an �-dimensional vector with all elements as 1 and � is the mean intrinsic growth 

rate. The spatial variance-covariance matrix �� can be modeled as �� = ��2�, where � is as 

defined in (3). For an example of a similar modeling approach in the context of spatial Gompertz 

population dynamics model, we refer the reader to Thorson et al. (2015).  

Hierarchical Distance Sampling Model 

In this section we describe an HDS model that we employ in our simulation study. Let ��,� 
denote the animal abundance on a distance sampling effort area of size ��,� surveyed in year � on 

a given site �. Conditional on ��,�, we model the transect abundance ��,� as  ��,�|��,�~����������,��;  log ��,� = log��,� + log��,� .              (7) 

Note that we define ��,� as animal abundance on a unit area in site � which includes the effort 

area, ��,�, as a subset. Furthermore, unlike Sollmann et al. (2015) who parameterize their Poisson 
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process model directly on population size ��,�, we view ��,� as a function of animal density, ��,�, 
where log��,� (= ��,�) is modeled via the spatial Ricker SPD model (2). 

Here, for simplicity of exposition, we only consider line transect sampling. Partitioning 

the transect half-width, �, into � equi-length distance intervals and conditioning on the latent 

transect abundance ��,� , the vector of animal counts, ���,� = (��,�,1,��,�,2, … ,��,�,� ,��,� −∑ ��,�,���=1 )′, is modeled as a conditional multinomial random vector (Royle et al. 2004): ���,�|��,�~��������������,� ,���,��,               (8) 

where ���,� = (��,�,1,��,�,2, … ,��,�,� , 1 −  ��,�)′ and ��,� = ∑ ��,�,���=1  is the total probability of 

detection given by an integral of the half-normal detection function, �(ℎ;�2) (Buckland et al. 

2001): ��,� =
1� ∫ ��ℎ;��,�2 ��ℎ�0 =

1� ∫ exp (− ℎ22��,�2 )�ℎ�0 . 

Notice that the modeling framework developed here also allows for other detection functions 

described in Buckland et al. (2001). When site-specific detection covariates are also available, 

the scale parameter ��,� can be modeled as (Moore and Barlow 2011, Oedekoven et al. 2013) 

log (��,�) = �0(�)
+ ∑ ��(u)��,�,����=1 ,               (9) 

where  ��,�,� is the ��ℎ detectability related covariate value observed in year � at site � for � = 1, 2, … ,��. 

 It is conventionally assumed that detection is perfect on the transect line (i.e. at distance ℎ = 0), which corresponds to �(0) = 1. If detection is imperfect at ℎ = 0, a separate estimate of �(0) is required to rescale the detection function. However, the additional parameter, �(0), is 

typically inestimable from distance sampling data alone as additional auxiliary information is 

required for its estimation (e.g., Laake and Borchers 2004, Barlow 2015). We assume �(0) = 1 

in our simulation study; however, we explicitly account for imperfect detection on the survey 

trackline in our fin whales case study. 

 Conditioning on animal density ��,�, but marginal on the transect abundance ��,�, we can 

show that joint distribution of observed animal counts, ��,� = (��,�,1,��,�,2, … ,��,�,�), is given as 

(Royle 2004): �����,����,�� = ∏ �������(��,�,�; ��,���,�,�)��=1 , 
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which is the observation process model in the state-space formulation outlined in (1) above. The 

observation model for the full distance sampling data array �, consisting of observed animal 

counts, can be written as ��(�|�) = ∏ ∏ ∏ �������(��,�,�; ��,���,�,�)��=1��=1��=1 ,          (10) 

where � is the � ×T latent animal density matrix over � sites and T years. Notice that the 

observation model (10) is an instance of a generalized linear mixed model (GLMM) where 

Poisson counts are modeled via a log-linear link function, i.e. 

log��(��,�,�|��,�)� = log���,�� + log���,�,�� + ��,�, 
where ��,� (= log��,�) serves as the spatio-temporal random effect. Further discussion on this 

and a comparison of the HDS model (10) with that of Sollmann et al. (2015) is presented in 

Appendix S2. Also, a graphical depiction of the various models estimated in this paper is shown 

in Fig. S1-S3. 

Model Estimation and Selection 

No closed form exists for the high dimensional integral appearing in Eq. S8, rendering the 

maximum likelihood estimation for such non-linear non-Gaussian state-space models 

computationally intractable. In this paper, we demonstrate how data cloning (DC), a recently 

developed algorithm for obtaining maximum likelihood estimates (MLEs) and associated 

standard errors in complex hierarchical models, can be used to conduct likelihood-based 

inference for models introduced in this paper. We further illustrate that DC is a powerful tool in 

diagnosing model estimability, a crucial property for valid statistical inference. For further 

details of the theoretical and computational methodology underlying DC, we refer the reader to 

Lele et al. (2007, 2010), Sólymos (2010) and Nadeem (2013). We also employ the method 

developed in Lele et al. (2010) to obtain a likelihood based predictive distribution for the process 

states, �� (see, for detailed illustrations, Nadeem and Lele 2012). 

 Although we show that maximum likelihood estimation for analysing a single real dataset 

is feasible using data cloning, in our simulation study we employed standard Bayesian approach 

with diffuse prior distributions to contain computational burden. All computations, for both DC 

and Bayesian inference, were performed using the MCMC samplers implemented in JAGS 3.1.0 

(Plummer 2003) via the dclone package (Sólymos 2010) of the R computing software (R Core 

Team 2014). A summary of prior distributions for respective model parameters is reported in 
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Table S1. We also provide R and JAGS code in Supplement 1 for the Monte Carlo simulation 

studies and DC based analysis of the case study model presented in the next section. 

 As we remarked in the Introduction, understanding and quantifying the extent of density 

regulation in wildlife populations is at the heart of population viability analysis (Dennis and 

Taper 1994). Here we compute the Akaike information criterion (AIC) index (Burnham and 

Anderson 2004) to illustrate that presence of density dependence can be detected within the 

modeling framework presented herein. A key ingredient in hypothesis testing and model 

selection analyses is the likelihood ratio (LR) statistic. However, computation of LRs is 

generally intractable in complex hierarchical models as one needs to calculate the maximized 

value of analytically intractable likelihood functions such as in Eq. S8. Recently, Ponciano et al. 

(2009) presented a computationally efficient Monte Carlo algorithm for computing LRs in 

hierarchical models. See Nadeem (2013) for detailed illustrations of its implementation in the 

context of state-space population dynamics models. 

Monte Carlo Simulations 

We evaluate model performance by simulating 100 distance sampling data sets under the 

hierarchical state-space model (HSSM) defined by the process model (2) and the observation 

model (10). We separately assess estimation performance under the spatial intrinsic growth 

models defined by (4) and (6), where we denote the resulting state-space models as HSSM-I and 

HSSM-II, respectively (Table S2). We sample the distance-sampling data at 25 sites, where site 

coordinates are generated from two independent uniform variates. Keeping in view the short time 

series length of the case study dataset (seven survey years), we generate 10 and 6 years-long 

distance sampling time series data under HSSM-I and HSSM-II, respectively.  

 For both models, we simulate population trajectories under stationary population 

dynamics with process growth model parameters set to (�, �,��2) = (1.00,−0.01,1.00). To 

subject our modeling approach to a stricter evaluation, we do not consider other dynamical 

scenarios, such as recovering populations and/or larger environmental noise, as the Ricker 

growth model parameters are shown to be estimable with high accuracy under these scenarios 

(Dennis and Taper 1994). For simplicity of exposition, we assume a single covariate both in the 

intrinsic growth model (4) and the detection model (9). These covariates, ��,� and ��,�, are 

independently generated from zero-mean Gaussian distributions with variances 0.1 and 1.0 

respectively. True values of all the model parameters are reported in Table S2.  
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It is important to note that the Ricker growth model generates chaotic population 

dynamics for � > 3.0 (Turchin 2003), making it highly intractable for statistical inference in the 

state-space framework using standard estimation techniques (Wood 2010). We therefore chose 

parameter values in (4) and (6) such that the resulting simulated intrinsic growth effects (��,� and �� under HSSM-I and HSSM-II, respectively) remain less than 2.0 in all simulations. Value of 

the spatial correlation parameter � (Table S2) is chosen such that it gives a correlation of 0.25 

between two sites located on the diagonal vertices of the unit square.  

 For simulations under HSSM-II, we consider the scenario where some of the sites are not 

visited after the first survey year, resulting in missing surveys in years 2 to 6 for such sites. 

Specifically, we randomly selected 5 unsurveyed sites from the total 25 sites. However, selection 

of such sites can be based on logistical convenience and geographic location in real distance 

sampling applications. We show that the animal density on these unsurveyed sites is accurately 

predicted by exploiting the underlying spatial correlation structure in population growth. This 

strategy can be repeated in the subsequent 5 years (t = 6, 7, …,10) by selecting a different set of 

unsurveyed sites while resuming surveys on the earlier skipped sites. We also fit the model under 

the hypothesis that � = 0, to show that density estimation is significantly biased (see Results 

section ahead) when spatial correlation between sites is ignored.  

Convergence of MCMC chains in HSSM-I simulation study and fin whales case study 

was satisfactory. However, for the HSSM-II simulation study, we found poor convergence in our 

simulation studies for the latent log-abundance in the unsurveyed sites, 

 ��(�)
= (�21,� ,�22,� , … ,�25,�). To address this issue, we provide a simple algorithm to compute a 

predictive posterior distribution of ��(�), whose details are given in Appendix S3.  

 

Fin Whales Case Study 

Under the U.S. Marine Mammal Protection Act, population assessments must be 

conducted for marine mammal stocks inhabiting U.S. waters.  Marine Mammal Stock 

Assessment Reports (e.g., Carretta et al. 2014) include estimates of animal abundance and 

population trends within the U.S. Exclusive Economic Zone, which encompasses only a fraction 

of most populations.  The Southwest Fisheries Science Center, part of the National Marine 

Fisheries Service, systematically conducted seven ship-based line-transect surveys for cetaceans 

in waters off the U.S. west coast during late summer and autumn between 1991 and 2014.  Data 
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through 2008 (the first six surveys) have been used to estimate abundance trends for fin whales 

(Balaenoptera physalus), beaked whales (family Ziphiidae), and sperm whales (Physeter 

macrocephalus) from a simpler hierarchical distance sampling model (exponential growth 

process model, no spatial covariance in the observation model) (Moore and Barlow 2011, 2013, 

2014).  The current analysis provides updated abundance and trend estimates for fin whales 

based on the newer model, new estimates of �(0), and inclusion of the 2014 survey data.   

Refer to Barlow and Forney (2007) and Moore and Barlow (2011) for details of the 

survey design, field methods, and description of the fin whale and effort data through 2008.  Of 

particular relevance to the current analysis is that the study area is divided into four strata of 

roughly similar size from north to south: Oregon-Washington, Northern California, Central 

California, and Southern California.  For the 2014 survey, stratum effort was, from north to 

south: 2706, 1998, 1839, 2779 km (total: 9322 km).  Only sightings ≤ 5.5 km from the vessel are 

included for the current analysis (in the earlier analysis by Moore and Barlow 2011, only 

sightings within 4km were used).  In 2014, there were 32, 36, 20, and 8 group sightings per 

stratum (from north to south; total = 96).  Mean group size for fin whales across the entire 

dataset is approximately 2 animals.  Many covariates potentially affecting sighting probability 

are recorded along the effort transects.  In general across cetacean species, the most important is 

Beaufort sea state, recorded as an integer ranging from 0 (no wind, sea like a mirror) through 5 

(approx. 20-knot winds with many waves and white caps).  Our analysis here is restricted to the 

impact of this variable on group detection rates.  

Let us now present the modeling framework for the fin whale dataset. Unlike the 

simulation study where our response variable was number of animals detected within the effort 

area partitioned in I distance intervals, here we have the actual detection distances available as 

well. Let us first introduce some notation where all distance units are in kilometers: �: Beaufort state with possible values 1, 2, …, 5 (0 and 1 are combined in integer value 1). ��,�,�: total transect length (km) in year � in stratum � with Beaufort state �, ��,�,�: effort area corresponding to ��,�,�, given as ��,�,� = 2���,�,�, where � is the transect half-

width, i.e. 5.5 km, ��,�,�: number of fin whale groups detected within ��,�,�, ��,�,�,�: distance of the kth  detection made within effort area ��,�,� (see Moore and Barlow 2011, 

for example frequency distributions of fin whale detection distances), 
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��(0): probability of detection on the transect line with Beaufort state �, ��: mean fin whale group size in year �, �� = ∑ ��,���4�=1 : total animal abundance within the whole study area, where �� is the area 

(km2

 The full observation model is then given as follows: 

) of the ��ℎ survey stratum with corresponding abundance in year t given as ��,���.  
��,�,�,�~�����,�,�,�;  ��,�,�2 �,              (11) 

where ��(. ) is the half-normal distribution, truncated at � = 5.5 km; and 

log (��,�,�) = �0 + ����������,              

(12) ��,�,�|��,�~ ����������,�,�(�) �,              (13) ��,�,�(�)
=

��,�,���(0)��,�,���,��� , where ��,�,� =
1� ∫ exp (− ℎ22��,�,�2 )�ℎ�0 . 

 Barlow (2015) derived estimates of ��(0) using a model-based approach only involving 

fin-whale detections on the trackline in varying survey conditions. The model form is given as: ��(0) = �1(0)����0; where � > 1.                (14) 

Importantly, these newer Beaufort-dependent �(0) estimates provide for a much lower marginal �1(0) estimate than the constant estimate of ��(0) = 0.92 used by Moore and Barlow (2011), so 

the new density and abundance estimates are expected to be considerably higher. Here we use 

the estimate of �1(0) = 0.92 for Beaufort states 0 and 1 (� = 1) and then calculate ��(0) for 

higher sea states based on the estimate of ��0 obtained in Barlow (2015). However, we only 

incorporate uncertainty associated with the �1(0) = 0.92 estimate reported in Barlow and Forney 

(2007). 

As no abundance-related covariates are available, and because we only have a small 

number of strata (sites), we assume stratum-specific intrinsic growth rate effects, (�1,�2,�3,�4)  

as unknown parameters in the process model (2). We separately estimate mean group size �� 
from the observed fin whale group sizes, with details provided in Appendix S4, where we report 

a simple algorithm for incorporating the uncertainty in the estimates of (�� , �1(0)) in our DC-

based maximum likelihood estimation. 

Results 

Monte Carlo Simulation Study 
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Table S2 summarises Bayesian estimation of model parameters from analysing simulated 

distance sampling data generated under HSSM-I and HSSM-II respectively. Summary statistics 

for bias and root mean square error (RMSE) of the parameter estimates indicate that observation 

model parameters (�0(�)
,�1(�)

) are estimated accurately under both models. The coefficient of the 

habitat related environmental covariate, �1(�), in HSSM-I is also accurately estimable. Estimation 

of the underlying intrinsic growth parameter, �, and the density dependent parameter, �, is also 

unbiased under both models. However, estimation of the population carrying capacity, K=-a/b, is 

slightly biased downwards under HSSM_II. Note that here K is, in a sense, an average carrying 

capacity over the entire study region as it is computed via the underlying single intrinsic growth 

parameter a. Parameters (�,��) associated with the environmental noise variance-covariance 

matrix, ��, are slightly biased downwards under HSSM-I. However, there is considerable 

upward bias under HSSM-II, likely resulting from strong interaction among the variance-

covariance related parameters (�,�� ,��,��1) in HSSM-II. 

The RMSE values are generally larger under HSSM-II, consistent with the facts that (i) 

we have smaller number of sites and years (20 and 6, respectively) as compared to those 

employed for HSSM-I (25 sites and 10 years), and (ii) unlike HSSM-I, HSSM-II does not 

include habitat related covariate information in the spatial intrinsic growth model. Notice that the 

RMSE of K is much larger under HSSM-II as compared to that of under HSSM-I. This is 

because the spatio-temporal variability in intrinsic growth under HSSM-I is effectively explained 

by the observed habitat covariate, ��,�. On the other hand, absence of such a covariate in HSSM-

II results in higher uncertainty in predicting site-specific intrinsic growth rate effects ��, which in 

turn induces large uncertainty in estimation of K. 

 Next we assess model performance in predicting the underlying spatial (log-) abundance 

densities (Fig. 1). It is evident that site-specific abundance prediction under HSSM-I is unbiased 

with good precision (Fig. 1a; RMSE = 0.1751). Fig. 1b depicts predictive accuracy under 

HSSM-II for the 5 unsurveyed sites over five survey years, from year 2 to 6. We also compare 

the performance by fitting a simpler model that ignores spatial correlation in the environmental 

noise process, (� = �� = 0; gray points in Fig. 1b). This without-spatial-correlation model 

seems to accurately predict densities only near the carrying capacity K=100. However, as the true 

densities fluctuate away from the carrying capacity, the accuracy deteriorates as predictions are 

significantly biased upward and downward whenever the true densities move above and below 
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the carrying capacity threshold (RMSE=0.3799). The predictive performance under HSSM-II is 

however unaffected by the underlying stochastic fluctuations in population abundance, and is 

much superior as compared to the simpler without-spatial-correlation model (RMSE=0.1942). 

Thus, the spatial correlation structure inherent in HSSM-II helps accurately predict abundance 

densities around the unsurveyed sites. 

Fin Whales Case Study 

Table 1 summarises Maximum likelihood estimates and associated asymptotic standard errors 

for various model parameters for the fin whale dataset, where we use ��0 = −0.2718 estimate 

from Barlow (2015).  We fit the original model as described by equations 11 – 14 (also see Fig. 

S3), including parameters ��������� for the effect of Beaufort sea state on the detection function 

parameter ��,�,� as well as ��0 for sea-state-dependent ��(0) (Eq. 14). However, there was no 

evidence for a sea-state effect on the detection function, as the estimate of ���������, which is 

expected to be negative if sea state matters, was slightly positive with a Wald-type confidence 

interval (CI) substantially overlapping zero (�̂�������� = 0.0325; CI: − 0.0424, 0.1074). Note 

that Moore and Barlow (2011) also did not find evidence for an effect of sea state on the fin 

whale detection function. Therefore, Table 1 presents revised model estimates with ��������� 
excluded (Model �1).  

Our DC-based estimability diagnostics indicated that all the model parameters in the 

original model, including (��0, ���������) are directly estimable from fin whales distance 

sampling data (Table S4). This is surprising at first glance; however, as the graphical depiction in 

Fig. S3 indicates, parameters (�0,���������) are estimable in (11-12) from the observed distance 

measurements, ��,�,�,�, alone. Therefore, there is sufficient information available in the observed 

fin whale counts, ��,�,�, to render ��0 as separately estimable (see Eq. 13). The estimate of ��0 
obtained directly from distance sampling data under �1 is -0.1729 (Table S4), indicating that 

detectability on the trackline deteriorates as sea conditions become rougher. However, this 

estimate is considerably less negative than the coefficient approximating Barlow’s (2015) ��0 
estimate (-0.2718). Barlow (2015) obtained his estimate using a spatial model for animal density, 

whereas our model here only estimates stratum differences in density.  Direct estimation of ��0 
(Table S4) may be confounded with animal density (e.g., if fin whales are more abundant in 

rougher more offshore waters, which is at least partly the case).  For this reason, we use Barlow’s 
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(2015) estimate of ��0 = -0.2718 for the analysis results reported in Table 1. But for comparison 

and future reference, we also report results corresponding to the distance sampling data-based 

estimate of ��0 (-0.1729) in Tables S4 and S5. 

We employed the AIC computation algorithm by Ponciano et al. (2009) for model 

selection to test two additional biological hypothesis of interest: (i) �0�: �1 = �2 = �3 = �4 = � 

, and (ii) �0�: � = 0, which indicates density independent population growth. The corresponding ∆AIC values are reported in Table 1 where Model �1 attains the lowest AIC value. The large ∆AIC values corresponding to the other two models (�0�, �0�) strongly support the hypothesis 

that fin whale population growth is density regulated and that the different strata support 

different intrinsic growth potential. 

The a parameters suggest annual population growth rates on the order of 20 – 50% for a 

small-population condition (i.e., when growth is not resource-limited).  These estimates are 

likely driven by rapid increases in abundance between the first two surveys (abundance roughly 

doubled in three years; Fig. 2). However, most baleen whale populations cannot increase by 

more than ≈ 5-12% annually (depending on the species) from birth and death processes (e.g., 

Best 1993, Zerbini et al. 2010).  Rather, the initial abundance increases were presumably driven 

by immigration from outside the survey area, which encompasses only part of this fin whale 

stock. As such, the observed distance sampling data lack information about true intrinsic growth 

potential for fin whales owing to the several missing survey years throughout the study period.  

However, the estimates of annual rate of change within the survey time frame, given by the 

combination of a and b, � + ����−1 (see 1-a), were reasonable and qualitatively comparable to 

those estimated by Moore and Barlow (2011).  The geometric mean for yearly growth rates, ��/��−1, from 1991 to 2014 had a mean of 1.075 (95% prediction interval based on predictive 

process distributions: 1.051 – 1.098). The strongest increases in abundance occurred after the 

1991 survey and again between the 2001 and 2005 surveys (Fig. 2b). Total abundance in 2014 

was similar to 2008, though this varied by stratum. In the 1990s, population density was highest 

by far in the Central California stratum (Fig 2a).  This has remained an area of high (though not 

consistently increasing) density for fin whales.  Densities have become similarly high in 

Northern California and off Oregon-Washington following strong and steady increases in these 

areas since the earliest surveys.  Fin whale density in Southern California has been lower than in 

the other strata since 2001 and generally non-trending (but variable) since 1996. In all, there has 
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been a roughly 5-fold increase in fin whale abundance within the CA Current study area between 

1991 and 2014. 

 The spatial Ricker process model indicated weak spatial correlation between the adjacent 

strata (mean ��(�,�) = 0.319) which further declined for the non-adjacent strata (��(�,�) = 0.036 

for Southern California and Oregon-Washington, the two outermost strata). As our simulation 

study for the HSSM-II suggested, presence of spatial correlation was useful for predicting fin 

whale density in Oregon-Washington during the 1991 and 1993 (Fig. 2a; recall this stratum was 

not surveyed in these two years). 

Notice that abundance estimates are much higher for this analysis (Fig. 2b) than those of 

Moore and Barlow (2011) because of the new �(0) model component (14) introduced here. For 

the four survey years between 1996 and 2008, abundance predictions ranged from 2.0 to 2.9 

times higher in the new analysis. A complete summary of abundance estimates are in Table S3; 

these include outputs relevant to the fin whale stock assessment report required under the U.S. 

Marine Mammal Protection Act. 

Discussion 

 Distance sampling methods are widespread in monitoring wildlife populations. (Buckland 

et al. 2001, Royle 2004, Thomas et al. 2010). Recent developments in model-based distance 

sampling methods, such as incorporation of spatial heterogeneity in abundance and detection 

probability as a function of observable covariates, have resulted in improved estimation of 

abundance over large geographic scales (Marques et al. 2007, Sillett et al. 2012, Oedekoven et al. 

2013). Time series of distance sampling data presents additional opportunity to study population 

trends and temporal dynamics in population growth using phenomenological population growth 

models (Dennis et al. 1991). A naïve approach to such an analysis is to fit population growth 

models to individual abundance estimates obtained from distance sampling analyses (see, for 

instance, Jolles 2007). But uncertainty is often mishandled when taking this approach, which can 

result in unreliable model estimation and mislead wildlife conservation management (Freckleton 

et al. 2006 , Nadeem and Lele 2012).  Improved frameworks have been developed (e.g., Moore 

and Barlow 2011, 2013, 2014); but we have taken this work further by developing a 

comprehensive state-space modeling approach that integrates distance sampling with a spatially 

explicit population process. By incorporating spatial variability in population growth within a 

unified framework (inference on SPD process model and the distance sampling observation 
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model obtained simultaneously), ecologists can better infer key population characteristics such as 

presence of density regulation and spatial variability in a population’s intrinsic growth potential.   

Our modeling framework is analytically more tractable compared to the generalized 

Markov model of Sollmann et al. (2015), which they introduced in order to take into account 

recolonization from the neighboring sites as their simpler log-linear trend model performed 

poorly when fitted to simulated data generated with recolonization allowed. Specifically, we 

show in Appendix S2 that the true population rate of change under the generalized Markov 

model is given as �� = � + exp (�2/2)/��,�−1, where � is the population rate of change that can 

be thought of as the sum of survival probability ϕ and recruitment rate ν; and �2 is an 

immigration process related variance parameter. However, as Sollmann et al. (2015) remark, this 

rate of change is inestimable because � and �2 are confounded. A similar population rate of 

change can be computed under our formulation (see Appendix S2 for details), given as ����� =��,�exp (� + ���,�−1 + ��2/2), where ��,� is the distance sampling effort area. Here, ����� is 

estimable because the underlying state-process parameters (�, �,��2) are all separately estimable. 

We further note that the Ricker SPD model (2) accounts for the dependence of ��,� on ��,�−1; 
hence, implicitly that of ��,� on ��,�−1 via (7), whereas any net immigration effect is implicitly 

explained by the variance-covariance parameters (��2,�). Therefore, relocation is automatically 

incorporated within our modeling framework. Given that the parameters under the HDS model 

(10) and process model (2) are all estimable, the modeling framework developed herein is much 

more useful from a statistical analysis viewpoint since it allows, for example, quantification of 

density dependence and estimation of site-specific abundances. 

In the case of fin whales occupying the California Current study area, our approach 

provided improved estimates of abundance (especially for the less-surveyed Oregon-Washington 

stratum) and population trend, with abundance coefficient of variations (CVs) that were smaller 

(Table S3) than those provided by Moore and Barlow (2011) even though we incorporated a new 

source of uncertainty in the present analysis (i.e. to account for the relationship between Beaufort 

sea state and �(0)).  The recent realization that �(0) varies with sea state (Barlow 2015) has 

important consequences for marine mammal population estimates and management; our fin 

whale estimates here are more than double the previous estimates.  Our DC based analysis 

framework elegantly accounts for this relationship, and if a spatial model for animal density were 
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incorporated in the analysis, then ��0 in (14) is estimable from the distance sampling data 

directly, thereby obviating the reliance on external estimates of relative �(0) values. 

Likelihood based inference for the class of non-linear non-Gaussian state-space models is 

highly intractable even for univariate time series processes (de Valpine 2002, Kantas et al. 2014). 

The form of the observation process model, ��(. ), in the standard setting is also simple, e.g. a 

Gaussian or Poisson model with at most one unknown parameter (de Valpine 2002, Pedersen et 

al. 2011). The non-linear state-space framework considered here adds further complexity in that 

(a) it replaces the univariate Markov transition density function (1-a) with a multivariate 

counterpart (2), and (b) instead of using abundance estimates in a simpler observation model, it 

invokes a full nonlinear hierarchical structure that directly models the observation process, 

thereby leading to an integrated state-space approach. This allows automatic incorporation of 

uncertainty associated with abundance estimation in estimating process level parameters. Here 

we have shown that the full range of likelihood based inference, including parameter estimation, 

model estimability, model selection and prediction of process states, is computationally 

accessible within this extended class of state-space models using the DC algorithm. Although, 

we focused on distance sampling observation models only, an important future direction would 

be to further extend our framework to other observation process scenarios, e.g. spatial mark-

recapture (Royle et al. 2009, Ford et al. 2012) and spatial count models (Hostetler and Chandler 

2014). 

Recently, Thorson et al. (2015) adapted the stochastic Gompertz model (Dennis and 

Taper 1994) in (2) to evaluate density dependence over continuous space within a state-space 

framework. The linearity in the Gompertz growth model, coupled with the spatial variance-

covariance structure as defined in (3), allowed their process model for �� to be a Gaussian 

random field. The choice of the Gompertz growth form was based on tractable statistical 

properties of the resulting linear autoregressive SPD model (Dennis and Taper 1994, Thorson et 

al. 2015). However, the Gompertz model is biologically implausible for densities fluctuating 

away from the equilibrium state (Ives et al. 2003). In comparison, the Ricker model adapted 

herein leads to a more biologically rich nonlinear autoregressive process model for �� which, 

conditional on ��−1, also defines a Gaussian random field process in (2). 

 Understanding animal movement patterns is also crucial for proper characterisation of the 

variance-covariance structure in spatial SPD models (Morales et al. 2010). The isotropic 
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correlation function used in our analysis allows only for positive correlation in population 

growth arising, for instance, from synchronous variability in habitat related factors in 

neighbouring sites. However, animal movement on a large geographical scale can induce 

negative spatial correlation in growth. For instance, negative correlation in fin whale stratum-

abundances can occur via shifts in cetacean−habitat configuration due to oceanographic 

dynamics over large scales, whereby animals move from one stratum to another (Becker et al. 

2014). This may explain the declines observed in Southern and Central California density 

between 2008 and 2014, and concurrent increases of Northern California, Oregon and 

Washington, as a northward shift in food availability may have driven large scale northward 

shifts in distribution (Fig. 2a).  

Recently, there has been promising progress in development of stochastic animal 

movement models (see, for instance, Albertsen et al. 2015). We believe that further integrating 

movement data and models into the HSSM framework developed herein would be a significant 

contribution, leading to improved insights into population dynamics and distribution in future 

applications. 
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Table 1. Maximum likelihood estimates and standard errors of parameters in the hierarchical 

state-space models fitted to the fin whale (Balaenoptera physalus) distance sampling data, where 

we use ��0 = −0.2718 estimate from Barlow (2015). Note that the estimate of b under �0� and �0� also reflects unit area for ��,�, which is 50,000 km2

Model 

 in all the fitted models. 

�1 �2 �2 �4 � �0 ��  � ∆AIC �1 
0.1691 0.4253 0.4320 0.3077 -0.0009 0.9296 0.2402 0.0357 

0 
(0.0805) (0.1689) (0.1252) (0.1043) (0.0004) (0.0501) (0.0874) (0.0891) �0� 
0.2265 - 

ǂ
 - - -0.0006 0.9302 0.3124 0.0096 

8.8722 
(0.0840) - - - (0.0003) (0.0477) (0.0940) (0.0310) �0� 
0.0263 0.0228 0.1187 0.0935 - 0.9301 0.1920 0.0188 

14.5755 
(0.0432) (0.0420) (0.0436) (0.0514) - (0.0491) (0.0947) (0.0617) 

ǂ Estimate of  � under �0�: �1 = �2 = �3 = �4 = �. 
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Figure captions 

Fig. 1 – (a) True (��,�) verses predicted (���,�) log-abundance densities under HSSM-I, and (b) the 

same under HSSM-II (black points) and nonsptial HSSM-II (� = �� = 0, gray points) across 

100 simulated datasets. Predictions shown under HSSM-II are for the 5 unsurveyed sites during 

years 2 to 6. Gray lines indicate ideal predictive performance (RMSE=0) and the vertical dashed 

line marks the log-carrying capacity level (log�). 

Fig. 2 – (a) Predicted fin whale density (per 100 km2) by year and stratum. (b)  Predicted total 

abundance along with 95% prediction intervals and the lower 20% quantile of the respective 

predictive distributions. Note that Oregon-Washington stratum was not surveyed in 1991 and 

1993. Various symbols (circles, rectangles, etc.) in both panels indicate the survey years: 1991, 

1993, 1996, 2001, 2005, 2008 and 2014.  
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